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State space reduction for time Petri nets with
weak semantics

Aleksei Zubarev

Abstract. We consider the time Petri nets (an extension of Petri nets), where
every transition has its time interval. The policies of time-elapsing and the memory
policies define different semantics for time Petri nets. The decidability of many
standard problems with an infinite discrete structure depends on the choice of
semantics. The state space of the time Petri nets is infinite and non-discrete. It is
known that there is a reduction of the state space to discrete one for the time Petri
nets with strong semantics. In this paper, we prove that a state space reduction can
be applied to weak time Petri nets equipped with intermediate and atomic memory
policies.

Keywords: State space reduction, weak time Petri net, intermediate memory
policy, atomic memory policy.

1. Introduction

Petri nets [5] is one of the generally accepted models for the analysis of con-
current and distributed systems. In verification systems, there is an obvious
need for considering time. Different timed extensions of Petri nets have been
proposed [4][8][3]. They combine the discrete structure and continuous time
characteristics.

Time Petri nets are an extension of Petri nets, where every transition
has a clock function and a time interval. There are two policies of time-
elapsing, which define weak and strong semantics [11]. Time cannot disable
a transition in strong semantics, thus the transition has to fire no later than
the upper limit of the time interval is reached. On the contrary, all time
delays are allowed in the weak semantics. In [2], the authors have proven
that the weak semantics and strong semantics are incomparable. It is known
that standard verification problems are decidable for the timed extensions
of bounded Petri nets with either semantics. However, the choice of seman-
tics plays an important role when we consider models with an unbounded
discrete structure. The standard verification problems are undecidable for
time Petri nets with the most studied strong semantics.

When a transition ¢ fires, the clocks of some of transitions may be reset.
Various ways to reset the clock are considered. The memory policies specify
when information about time is kept. The fundamental model of Merlin [4]
has an intermediate memory policy. This semantics considers an interme-
diary marking between consumption tokens from the input places of ¢ and
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production tokens to the output places of ¢. If a transition ¢’ is disabled in
the intermediary marking, then the clock of ¢’ is reset. On the other hand,
the atomic semantics considers a firing as one-step. The clock of ' is reset
only if ¢ is disabled in the marking before ¢ fires. The memory policies for
strong semantics have been studied in [1]. In [9], the authors have proven
that the marking reachability problem, the coverability problem, and the
boundedness problem are decidable for weak time Petri nets with the inter-
mediate semantics. Furthermore, a marking is reachable in such nets if and
only if it is reachable in the underlying untimed Petri net. They also show
that the atomic semantics is not included in the intermediate one for weak
time Petri nets.

The state space of time Petri nets is infinite and non-discrete, which
increases the complexity of the model analysis. In [7][6], the transformation
to discrete time elapsing was introduced for time Petri nets with strong
semantics. This transformation reduces the state space and preserves the
properties of the system. In addition, it allows us to use the reachability
graph to study a system behavior.

The aim of this paper is to generalize the state space reduction ap-
proach [7] for time Petri nets with weak semantics and different memory
policies. We prove that any reachable marking of a time Petri net with
weak semantics can be obtained by a firing sequence with only integer time
elapsing.

The paper is organized as follows. In Section 2, we consider some def-
initions for Petri nets and time Petri nets. In Section 3, we introduce a
parametric firing sequence (a generalization of the firing sequence for time
Petri nets) with variable time components. Further, we define an integer-
value assignment to variables in the parametric firing sequence. Next, we
show that this assignment produces a firing sequence of time Petri nets.

2. Preliminaries
2.1. Time Petri nets

In this section, some terminology concerning the model of Petri nets with
timing constraints (time intervals on the firings of transitions) are defined.
We start with recalling the definitions of the structure and behavior of Petri
nets (elementary net systems) [10].

Definition 1.

o A Petri netis a tuple N = (P, T, F, V, M), where P is a finite set
of places and T is a finite set of transitions such that P nT = ¢J and
PuT # g, Fc(PxT)u(T x P)is a set of arcs (flow relation),
V : F — N is a weight of the arcs, My : P — N is an initial marking
such that My # 0. Forx € PuT let *z : PuT — Nand z* : PUT —» N
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be the backward incidence mapping and forward incidence mapping of
x, respectively.

. _{ Vy,2) if(y,x)eF, . . _ [ Vizy) if (z,y) €F,
w(y) = { 0 otherwise. z*(y) = 0 otherwise.

e A marking of a Petri net V is a total function M : P — N. A transition
t € T is enabled at a marking M if *t < M. Let En(M) be the set
of transitions enabled at M. The firing of a transition ¢ enabled at a
marking M leads to the new marking M’ (denoted as M —— M’) iff
M’ = M —*t +t*. We write M - M’ iff @ = t; ...t and M = MO
oAt MR S AR = MY T this case, ¥ is a firing sequence
of N from M (to M'), and M’ is a reachable marking of N from M.
Let RM(N) be the set of all reachable markings of N from Mj.

Following the approach of [9], we extend the above model to time Petri
nets with weak semantics equipped with different memory policies for the
firing of transitions.

Definition 2.

e A time Petrinet (TPN) is a pair TN = (N, D), where N = (P, T, F, V, My)
is the underlying Petri net and D : T'— Qx¢ x (Qx U {0}) is a static
timing function associating with each transition a closed interval be-
tween two time values. For a transition ¢ € T, the boundaries of the
interval D(t) are called the earliest firing time E ft and latest firing
time Lft of t.

e A state of TN is a pair (M,I), where M is a marking and I :
En(M) — R is a dynamic timing function. The initial state of TN
is a pair Sy = (Mo, Iy), where My is the initial marking and Iy(¢) = 0,
for all t € En(Mjy). A transition ¢ enabled at a marking M can be fired
from a state S = (M, I) if I(t) belongs to the interval D(t).

Two types of events are considered for time Petri nets.
(a) The discrete event (firing of a transition) is defined Vt € T' by
( te En(M),and,

M'= M —*t +t*,and,

(M, I) = (M, T') iff S Eft(t) < I(t) < Lft(t), and,

0 if 1 enableds(t', M,t)
I(t") otherwise

Vt' e En(M"),I'(t') = {

\
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(b) The continuous event (the time elapsing) is defined V7 € R>q by

(M, I) = (M, I') it Vt' € En(M), I'(t') = I(t') + T

A predicate T enableds(t', M,t) with s € {I, A} indicates whether we
need to reset the clock of ¢’ after a firing of a transition ¢ at a marking
M. Different semantics can be chosen in order to realize these resets. This
choice depends on what is called the memory policy [1].

I: Intermediate semantics considers a firing of a transition as two actions:
consuming the tokens from input places of ¢, and producing the tokens
to output places of t. Thus the clocks of ¢t and of the transitions that
could not be fired in parallel with ¢ from the marking M are reset.

T enabled;(t',M,t) =t € En(M —°t+t*) A (t' ¢ En(M —°*t) vt =1t

A: Atomic semantics considers a firing of a transition as one action. The
clocks of t and of the transitions ¢’ ¢ En(M) are reset.

T enabledo(t', M,t) =t € En(M —*t+t*) A (' ¢ En(M) vt =1t)

We use the notation S 7> §" iff 0 = #1...7; € (T'URx()¥ and S = S°

gt gkt ey gk g (k = 0). In this case, o is a firing sequence of
TN from S (to S’), and S’ is a reachable state of TN from S. Let FS(TN)
be the set of all firing sequences of TA from Sy, and RS(TN) be the set of
all reachable states of TN from Sj.

We require the following standard properties for the time elapsing:

e Time determinism: if S — S’ and S —> S” with 7 € Rsg, then
S =5"

e O-delay: S BNy

o Additivity: if S —> &’ and §' > §” with 7,7’ € Rag, then § 75 §”.

e Continuity: if S —» S’, then for every 7/, 7 € Rxq, such that 7 =

7_//

7' + 7", there exists an S” such that S — S” - §’.

With these properties, a firing sequence can be defined as a finite se-
quence o = Tot17y ... txTk, Where discrete and continuous events alternate.
We write Untimed(c) = t; ...t for the untimed part of o and UFS(TN)
for the set of all Untimed(c), where o € FS(TN).
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Definition 3. Two time Petri nets TN = (N, D) and TNy = (N, Ds)
are time equivalent iff there exists a constant ¢ # 0 such that for each
transition ¢ in N:

Lfti(t) = oo iff Lfty(t) = o0,
=0,

o Efti(t) = 0 iff Efts(t)
o Lfti(t) = 0iff Lfta(t) =0,
o Efti(t)/Efts(t) = c iff Efta(t) # 0,

L]
—~

Lftl t)/LftQ(t) = c iff Lftz(t) # 0.

Theorem 1. Let TN be a time Petri net. Then there exists a time Petri
net TNy with Dy : T — N x (N U {0}) such that TN1 and TNy are time

equivalent.

Ideas of the proof. Compute the L.C.M. ¢ of the denominators of all
Efty and Lft; of TN ;. Then, define Efty (Lfte) as the product of E ft;
(Lftl) by C.

In the sequel, we will consider the TPN with integer interval bounds.

3. Integer firing sequence

The aim of this section is to prove the following: any reachable marking of
a time Petri net can be obtained by firing sequence with only integer time
elapsing. This generalizes the results of [7] for weak semantics and different
clock memory policies.

Definition 4. A state S = (M,I) is called an integer-state if for every
t € En(M) it holds that I(t) € N.

Definition 5. A firing sequence o = 7pt17ity ... 1,7 is called an integer
firing sequence if for every ¢ = 1,...,k it holds that 7; € N.

Now we define a parametric firing sequence w(x) = xoti121 .. . tgxy that is
a generalization of a firing sequence ot 71 . . . 57k, with variables z; instead
of a fixed number 7;. In addition, we unite the requirements for values of x;
into the set B,,.

Definition 6. Let TN = (N, D) be a time Petri net, w = t;...t; €
UFS(TN), and x = (x¢,..., ) be a vector of variables. We define by
induction a finite sequence of tuples (w;(x), M., By, Lo, ):



44 Aleksei Zubarev

P2 to[1, 2] P4 t4]1,2] D6

/]

1
LI

D1 t1[1,2] P3 t3[3, 4] D5

Figure 1. The time Petri net

Basis: i =0,

e wo(x):=xo

[ ] Mwo = M()

e B, =

o Vte En(M,,), L, (t) := xg

Step: Assume that (w;—1(z), My, ,, B, ;51w ,) is already defined.

° wz(x) = wi_l(x)timi;

o M, =M, ,—"°t; +1t3;
i Bwi = Bwiq Y {Eft(tl) < Iwz'q(ti) < Lft(ti)}§
o Vte En(M,,),

x; if 1 enableds(t, M,,_,,t;)

Ly (#) = { I, (t) +x; otherwise

Then, the parametric firing sequence (w(x), By) of TN and the parametric
state (S, By) are defined as follow:

(w(@), Bu) := (wk(x), Buy,)
(Sw, By) = ((MkaIwk)vak)

We remark that t; € En(M,, ,) for i = 1...k, as there is a firing se-
quence o such that w = Untimed(c). Then the definition is correct.

Example 1. Let us consider the time Petri net 7N with atomic semantics
in Figure 1 and the firing sequence o = (1.5)#1(0.5)t2(3.2)t3(0.7) of TAN. We
note that o is not a firing sequence in the case of intermediate semantics, as
the clock of %o is reset after ¢; fires. In strong semantics, the transition t3
is dead. For the transition sequence w = Untimed(c) the parametric firing
sequence (w(x), B,) has the form w(x) = zotix1tazatsxs and
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Eft(t1) < xo < Lft(th), zo = 1, z0 < 2,
B, = Eft(tg) <zg+121 < Lft(tg), = ro+x1 =1, x9g+x1 <2,
Eft(ts) < z2 < Lft(ts) x9 = 3, z9 <4

It is easy to see that the function 8(x) = (8(xo), B(x1), B(x2), B(x3)) =
(1,1,3,1) is a solution of B, and thus w(f(x)) = (1)t1(1)t2(3)t3(1) is the
firing sequence of TN . The next Proposition proves this property for any
solution of B,,.

We denote the value of a linear function g(x) under the assignment 3 by
[9]5-

Proposition 1. Let TN = (N, D) be a time Petri net, w = t1...t; €
UFS(TN) and (w(x),B,) = ((zot121 ... txxk), Bw) be a parametric firing
sequence of TN. Then if f(x) = (B(x1),...,B8(xx)) is a solution of By,

then w(B(x)) is a firing sequence.

Proof. Let us prove that (M, Iy) wilB)) (M, 1)) foralli =0... k.

Induction on <.

Basis: ¢ = 0. By Definition 6, wo(5(z)) = B(z0); My, = Mo; Vt €
En(M,y), [1ulp(t) = B(xo). Therefore, by Definition 2, (Mo, Iy) wolP(e)
(M, [Iwo]/ﬂ’)'

Step: Assume that (Mo, Ip) QUGS (M, [1;]8) holds for 0...7 — 1,
and now prove it for i. As w;(z) = w;—1(x)t;z; we need to show that

(Mo, 1+ [Lo 18) "2%) (M., [1,,]5). By Definition 6, we have:
e {; € En(Mwi_l),
o M, =M, ,—"*t;+t;,
o Eft(t;) < [ln,_,18(t:) < Lft(t;) (because § is a solution of B,,),

0 if 1 enableds(t, My, ,,ti)

o Vte En(M,,), |1.,]5(t)—B(x;) := { [l ,]15(t) otherwise

Then, by Definition 2, we have (M., ., [l ,]3) i, (Mo, 1o, 13—B()) Alay)
w(B(x
(Mo, [L,]5). Hence (Mo, Io) “C%) (M, [L.]5).
[

Now we want to study the structure of the inequalities in the set B,, and
the structure of the function I,,.



46 Aleksei Zubarev

Proposition 2. Let TN = (N, D) be a time Petri net, w = t1,...,t; €
UFS(TN) and (wi(x), My,, By, L,;) be sequences of tuples from Defini-
tion 6. Then it holds that

(a) If t € En(M,,) then the variable x; appears in 1, (t).

(b) If t € En(M,,) and the variable x,, appears in I, (t) then n < i and
every variable x; with n <1 <1 also appears in 1, (t).

(c) If t € En(M, y and the variables x, and x, with m < n appear in
1, (t) then every variable x; with m <1 < n also appears in 1, (t).

(d) If t1,t2 € En(M, ) then either each variable appearing in I, (t1) also
appears in I, (t2) or vice versa.

(e) If g(z) < r is an inequality in B,, and the variables x,, and x, with
m < n appear in g(x) then every variable x; with m < 1 < n also
appears in g(x).

Proof. Induction on .

Basis: For ¢ = 0, all five assertions follow immediately from Definition 6.

Step: We assume that the assertions hold for 0...7 — 1, and now prove
them for 1.

(a) The assertion follows from the definition of I,,,.
(b) By Definition 6, either I, (t) = x; or I, (t) = I, ,(t) + z;. Thus, the
result follows from the induction hypothesis.

(¢) The assertion follows from (b).

(d) According to (b), I, (t1) and I, (t2) have the form:
L,,(t1) = Ticn + Ti_(n_1y) + ... + 2

Iwi (t2) =Tim T Ti—(m—1) +...+tx;

If n < m then all variables appearing in I, (¢1) also appear in I, (t2).
If m < n then all variables appearing in I, (t2) also appear in I, (t1).

(e) Since g(x) = I, (t) for some n € {0,1,...,7 — 1}, the result follows
from (c).

[m]

By Definition 6, the set B, has the form {g;(z) < ¢;, hi(z) = ri|i =

1...k}. Denote by B, = {gi(z), hi(z)]i = 1...k} the set of variable parts

of inequalities from B,. We further provide the construction of an integer-
value assignment 3, to variables in the parametric firing sequence.
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Definition 7. Let TN = (N, D) be a time Petri net, o = 7t171 ... tx7x €
FS(TN) be a firing sequence, w = Untimed(o), and ((xot121 ... tgpay), By)
be a parametric firing sequence of TN. Define by induction a finite sequence
of assignments 3; : {xo,...,xx} — Rxso:

Basis: fo(xj) ;=7 forall j =0,1,... k.

Step: Assume that 5; i is already defined. In the construction of 3; we
use the following function:

Bi = { Bi-i(w) iz £z o)
- |Bi—1(z)] otherwise

We now define 5; by

Bi—1(z) i @ # 21
lﬁz—l(x)J if ¢ =~$k,(i,1) and

Vge B, = |lglg] —1 <lgls
[Bi—1(x)] otherwise

Bi(x) =

We put S (z;) := Brri(xj) for all j =0,1,... k.

Obviously, the values of this function are all integer. Clearly, an assign-
ment (3; is obtained from B;_; by rounding the value 8;_1(z;_(;—1)). The
next proposition now follows immediately.

Proposition 3. For alli€ {0,1,...,k + 1} it holds that

(a) Bi(xj) = Bo(z;) for je{0,1,... k—i}
(b) Bi(xj) = Bry1(xj) forje{k — (i —1),k— (i —2),...,k}

Example 2. Let us again consider the time Petri net TN with atomic
semantics in Figure 1. It is clear that B, = {xo, o + z1, 22} and (|[zo]g,]| —
L|lzo + z1]g,] — 1, [[22]5,] —1) = (0,1,2). In the table in Figure 2 we
produce integer values for variables {z¢, z1, z2, z3}.

Thus, we obtain the integer firing sequence w(5,(x)) = (2)t1(0)t2(3)t3(0).
We will show that if w € UFS(TN) then w(B,(x)) is an integer firing se-
quence.

Consider some properties for the functions g;.
Lemma 1. For allie€ {0,1,...,k + 1} it holds that:

(a) Y¥g(g € B — [gls, € (Llglao] — 1. [lgls,] + 1)),
(b) Vt(t € En(M,) — [L(t)]s, < [Hw(t)]s0),

k k
(c) [ X xj]ﬁi < [Z xj]ﬁo

j=0 j=0
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1=0|i=1]t=2|¢=3

— 1.5 1.5 1.5

- 0.5 0.5 0

— 3.2 3 3

— 0 0 0

— 1.5 1.5 1.5

- 2 2 1.5

5 — |32 3 | 3
lglgol =1 <lglg, | — | true | true | true
1.5 1.5 1.5 1.5

0.5 0.5 0.5 0

3.2 3.2 3 3

0.7 0 0 0

Proof. Induction on 3.

and now prove them for ¢ + 1.

from the induction hypothesis.

possible values that §;,1(xr_;) can take:

(a): Let g € B,

Bit1(z) < Bi(x) for all z € {xo,...

Figure 2. The construction of the assignment f,,

Basis: i = 0. For ¢ = 0, there is nothing to prove.
Step: We assume that the assertions (a), (b) and (c) hold for 0,...,:

If Bi(zk—;) € N, then B; 11 = (; and thus all assertions follow immediately
Therefore, we assume that 5;(xx_;) is not an integer. There are only two
Case 1: Biy1(xr—;) = |Bi(zr_;)| Hence, it holds that

, Tk}

Using (1), we get [g]gi+1 < [g]gi- Hence by this and by the induction
hypothesis, [g]gi+1 < [9]pi < [lg]g,] + 1.

As Biz1(zk—;) = |Bi(zk—s)], the corresponding criterion

Vhe By — |[h]g,) — 1 < [P,

is fulfilled. Since f;i11 = Bit+1, we have |[g],] — 1 < [g]
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(b): Let t € En(M,). Using (1), we get [L,(t)]g,,, < [Lu(t)]g,.- Hence
by this and by the induction hypothesis, [1,(t)]g,,, < [Hu(t)]s <
[Lo(®)]go + 1.

1

k k
(c): Using (1), we get [ >} x;]s,,, <[> x;]3,- Hence by this and by the
j=0 =0
k k k
induction hypothesis, [ >} zjlg,,, <[22 z;ls, <[X zjl5 + 1.
j=0 j=0 =0
Case 2: Biy1(xr—;) = [Bi(zk_;)]. Hence, it holds that
Bi(x) < Pit1(x) for all x € {xg, ..., x}. (2)
Moreover, Ew contains h such that
[h]ﬂiﬂ < l[h]ﬁoj -1 (3)

and xj,_; appears in h. Thus, we have [h]g,,, = [h]g,—Bi(zr—i)+Bit1(zk—i) =
(Rl g, = Bi(zk—i) +[Bi(zr—i)| = [hlg, — Bilzk—i) + | Bi(zh-i)|+1 = [h]g,, +1 <
|[[~]g,], hence

[h]ﬁiﬂ < l[h]ﬁoj < [h]ﬂo (4)

Let m and n be the minimal and maximal variable indices appearing in
h, respectively. From Proposition 2(e) it follows that

h=apm+.. . +T 1)+ Tp—i+ ... +Tn. (5)
~—_———

« »

g

hi ha

(a): Suppose to the contrary that there exists g € B such that 9], =
[l9],] + 1 Then xj_; appears in g and

[9]5i+1 = [[g]ﬁo] +1= [g]ﬁo + L (6)

Let m’ and n’ be the minimal and maximal variable indices appearing
in g, respectively. From Proposition 2(e) it follows that

9=Tm + oo+ Tp_(ip1) F Thmi + . + Ty (7)
~ v = N
g1 92

We now consider the relationship between the two maximal indices n
and n/. There are three possibilities:

e n=n'. Then hy = gs. According to Proposition 3(a), [h1]s,,, =
[h1lg, and [g1]s,,, = lg91]lg,- Thus, by (6) we have [g2]g,,, —
[galso > 1. But by (4) [gals,, — g2l < 0 and we reach a
contradiction.

e n <n/. Then
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g:gl+h2+1\3n+1+...+{£nj/. (8)

g5
According to Proposition 3, [g1 + h2ls,_, = [g1 + h2]s, and

(93], = [9318,s1 = l93]g.,,- Thus, by (4) we have [g]s,,, <
[9]5,_,- Since k —i < n, it follows that k —n < i+ 1. By (6),

[9)8:41 = [l9]s,] +1. As a result, we obtain [g]g, , = [[9]g,| +1,
which contradicts the induction assumption.

e n' > n. Then

h=hi+g24+xpi1+...+x,. (9)

hs

According to Proposition 3, [h1 + g2]s,_ , = [h1 + g2]g, and

[h?’]ﬁk [h3]ﬂz+1 = [h3]ﬂk+1 Thus, by (6) we have [h’]BH—l -
[P, ., = 1. Slnce k—i<n it follows that Kk —n' <i+ 1. By
(4), [h]s,. < [[P]go] — 1. As a result, we obtain [h]g,_ , <
[[P]g,] — 1 Wthh contradicts the induction assumption.

(b): Let t € En(M,,). If x;,_; does not appear in I, (t), then [L,(t)]s,,, =

(c):

[L,(t)]s;, and [L,(t)]g,,, < [Lu(t)]s, follows from the induction hy-
pothesis. Suppose that xy_; appear in I,(t). Let n be the minimal
variable index appearing in I, (t), respectively. From Proposition 2(b)
it follows that

Iw(t) :xﬁ—i-...+.7}k_(i+1)+$k,i+...+$n+§n+1 +...+x;3.
I 2 A

(10)

According to Proposition 3, [ha]g, , = [h2]g,s [11]8, ,, = [{1]8,..+ and

= [11]
1218, , = [L2]g;,,- Thus, by (4) we have [1,(t)]g,,, < [w(t)]ﬂk -
Since k —n < i+ 1, then by the induction assumption, [1,(t)]s,,, <

[Iw(t)]ﬁ()'

l’j:$0+...+xk,(i+1)+i€k_i+...+a?73+xn+1+...+$13.

~ g

p3f} ha Yo

.
L[]
o

(11)
According to Proposition 3, [halg,_, = [hg]go7 [21]s,_,, [El]giﬂ,

and [22]519771 = [22]ﬁ¢+1‘ Thus, by( )We have [Z x]]ﬁwl = [Z x]]ﬁkfn‘

7=0 7=0



State Space Reduction ol

lglge] =1 9]0 L9151 [lg]o] +1

P | | |
~ [ [ [

L9150

Figure 3. An inequality g(z) € B,

k
Since k —n < i+ 1, then by the induction assumption, | >} z;|g,,, <
7=0

Corollary 1. B,(x) is a solution of B,.

Consider an arbitrary (g(z) < ¢) € B, in Figure 3. According to
Lemma 1, we have [gls. € (1[gla] — 1 [lgl] + 1)). Since [g]s, < ¢ and
c e N, it follows that [g]g, < c. Similarly, if (h(x) > r) € By, then [h]g, > .
Thus B, (z) is a solution of B,,.

U

If we combine Corollary 1, Proposition 1, and Lemma 1, we get the
following theorem:

Theorem 2. Let TN = (N, D) be a time Petri net, o = Tot171 ... txTx be a
firing sequence of TN, (Mo, Iy) — (M, I), w = Untimed(c), (w(z), B,) =
((xot1z1 . . . tyxy), By) be a parametric firing sequence, (Sy, By) = ((My, 1), Bw)
be a parametric state. Then there exists an assignment By, : {xo, z1,..., T} —

N for which the following holds:

e w(B,(x)) is a firing sequence of TN,
o YVt e En(M,) it holds that [1,(t)]s, < I(t),

k

k
o [X zjlp, < X 7y
=0 =0

As the examples show, the assignment [, described in the theorem is
not uniquely determined. By the theorem, we get one of the most important
properties.
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Corollary 2. Let M be a marking of an arbitrary reachable state in a TPN
TN. Then M is a marking of a reachable integer-state in TN with an
integer firing sequence.

4. Conclusion

In this paper, we have studied the state space reduction for time Petri nets
with weak semantics. We have shown that any reachable marking of a
weak time Petri net with intermediate and atomic memory policies can be
obtained by an integer firing sequence. In the future, this allows us to
consider only time Petri nets with integer time elapsing and integer bounds
of time intervals. Therefore, we can use only the time elapsing of length 1.

Further we plan to introduce time processes to represent the causal be-
havior of time Petri nets with weak semantics equipped with different mem-
ory policies. The casual semantics will be required to develop equivalence
with partial order semantics for weak time Petri nets.
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