Computer-aided simulation of the nonlinear regime of the beam-plasma interaction
The problem of an electron beam and plasma interaction is considered. The physical mechanism of the beam-plasma interaction includes a resonant excitation of plasma oscillations, the occurrence of the plasma density modulation, followed by electron scattering. For the modeling, the PIC-method is used. In order to solve this problem, a...
Supercomputer simulation of plasma electron dynamics in a magnetic trap with inverse magnetic mirrors and multipole magnetic walls
The problem of simulation of plasma electron dynamics in the magnetic trap with inverse magnetic mirrors and multipole magnetic walls is considered. The model is built on the basis of Particle-In-Cell method. The complexity of processes under study and the necessary in a high precision of results required the development...
The parallel three-dimensional PIC code for the numerical modeling of ultrarelativistic beams
We present a parallel 3D algorithm for simulation of beam-beam effects in supercolliders, where colliding beams have superhigh densities and high relativistic factors. The algorithm is based on particle and domain decomposition and demonstrates good speed-up and scalability.
GPUPEGAS: a new GPU-accelerated hydro dynamic code for numerical simulation of interacting galaxies
In this paper, a new scalable hydrodynamic code GPUPEGAS (GPU-accelerated Performance Gas Astrophysical Simulation) for the simulation of interacting galaxies is proposed. This code is based on a combination of the Godunov method as well as on the original implementation of the FlIC method, specially adapted to the GPU-implementation. Fast...
Two-level explicit difference schemes
The main disadvantage of explicit schemes for the numerical solution to nonstationary problems is in a very strong stability condition for the size of a time step size. One of the possibilities to improve the efficiency of explicit algorithms is to use different time steps in different space subdomains. From...
A parallel algorithm for solving the mantle flows non-stationary problem
A parallel version of the program for the simulation of flows in the Earth's mantle has been developed. A non-stationary model of the mantle flows describes a compressible medium with strongly varying rheological and transport properties. It is based on the solution of the Navier–Stokes equations. The numerical model includes...
Studying a spatial-temporal distribution of seismicity in the area around Fukushima Prefecture by GIS-EEDB program tools
In this paper, a modification of the high-tech expert system GIS-EEDB (Expert Earthquakes Database) intended for solving a wide range of seismological research tasks, called "Fukushima-EEDB" is proposed. For the first time the system was developed on the platform of Windows 8. The basic logical and functional structure as well...
The advantage of the GPU-based supercomputer simulation of plasma phenomena
A 3D kinetic study of the plasma relaxation processes caused by the propagation of an electron beam in high-temperature plasma was carried out. The mathematical model is built on the basis of the Particle-in-Cell (PIC) method. The performance for supercomputers powered by both Intel Xeon processors and Nvidia Tesla GPUs...
A scalable parallel algorithm of solving the Poisson equation for stellar dynamics problems
We present a new parallel algorithm for solving the Poisson equation in the context of non-stationary stellar dynamics problems, e.g. rotating galaxies or circumstellar disks. This allows us to conduct numerical experiments on a mesh with 10–100 billion of nodes and to use more than 10 thousand of processors. This...
Dispersion analysis of the hybrid plasma model
This paper deals with the analysis of the hybrid plasma model based on the kinetic description of an ion component of the plasma and hydrodynamic approach for electrons. This type of models is widely used to investigate the processes and mechanisms of the collisionless interaction of interpenetrating plasma flows with...